ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Work advances on X-energy’s TRISO fuel fabrication facility
Small modular reactor developer X-energy, together with its fuel-developing subsidiary TRISO-X, has selected Clark Construction Group to finish the building construction phase of its advanced nuclear fuel fabrication facility, known as TX-1, in Oak Ridge, Tenn. It will be the first of two Oak Ridge facilities built to manufacture the company’s TRISO fuel for use in its Xe-100 SMR. The initial deployment of the Xe-100 will be at Dow Chemical Company’s UCC Seadrift Operations manufacturing site on Texas’s Gulf Coast.
R. E. Maerker, F. J. Muckenthaler
Nuclear Science and Engineering | Volume 30 | Number 3 | December 1967 | Pages 340-354
Technical Paper | doi.org/10.13182/NSE67-A18397
Articles are hosted by Taylor and Francis Online.
Monte Carlo calculations, using the albedo concept, have been carried out to determine subcadmium and epicadmium neutron flux distributions along the centerline of a straight, a two-legged, and a three-legged square concrete duct arising from the slowing down of incident epicadmium neutrons for a particularly demanding source geometry and spectrum. The calculations used albedo data differential both in the reflected angles and reflected energy which have been reported previously for concrete. A comparison of the results of these calculations with those from a geometrically similar experiment shows good agreement and places on a firm foundation the concept of treating neutron slowing down in a concrete duct as a reflection phenomenon at a point which is describable by the differential albedo properties of the walls. The conclusion is also reached that the dose rates arising from the subcadmium neutrons (whether due to an epicadmium source or a subcadmium source) and associated secondary wall-capture gamma rays can comprise a very important part of the total absorbed dose rate in tissue deep inside a multilegged duct.