ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
R. E. Maerker, F. J. Muckenthaler
Nuclear Science and Engineering | Volume 30 | Number 3 | December 1967 | Pages 340-354
Technical Paper | doi.org/10.13182/NSE67-A18397
Articles are hosted by Taylor and Francis Online.
Monte Carlo calculations, using the albedo concept, have been carried out to determine subcadmium and epicadmium neutron flux distributions along the centerline of a straight, a two-legged, and a three-legged square concrete duct arising from the slowing down of incident epicadmium neutrons for a particularly demanding source geometry and spectrum. The calculations used albedo data differential both in the reflected angles and reflected energy which have been reported previously for concrete. A comparison of the results of these calculations with those from a geometrically similar experiment shows good agreement and places on a firm foundation the concept of treating neutron slowing down in a concrete duct as a reflection phenomenon at a point which is describable by the differential albedo properties of the walls. The conclusion is also reached that the dose rates arising from the subcadmium neutrons (whether due to an epicadmium source or a subcadmium source) and associated secondary wall-capture gamma rays can comprise a very important part of the total absorbed dose rate in tissue deep inside a multilegged duct.