ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
P. K. Job, M. Srinivasan
Nuclear Science and Engineering | Volume 85 | Number 4 | December 1983 | Pages 422-425
Technical Note | doi.org/10.13182/NSE83-A18388
Articles are hosted by Taylor and Francis Online.
It has been shown that the “minimum” achievable spherical critical masses for the three main fissile isotopes of 235U, 239Pu, and 233U at normal temperature and density with BeH2 as moderator and with a thick 9Be reflector is lower than for any other system reported so far. In this context the feasibility of decreasing the critical masses further by exploiting the Bragg cutoff phenomenon in cooled beryllium reflectors was investigated. The reactivity gain obtainable in cooling part (or whole) of the beryllium reflector of a BeH2-moderated homogeneous 233U system to liquid nitrogen temperature (78 K) is explored. Transport theory calculations show that a 50-cm two-zone beryllium reflector with a cooled inner zone of optimum thickness (∼15 cm) at 78 K has an improved albedo and results in a further reduction of 6 to 8% in the critical mass.