ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. Hoeld, O. Lupas
Nuclear Science and Engineering | Volume 85 | Number 4 | December 1983 | Pages 396-417
Technical Paper | doi.org/10.13182/NSE83-A18386
Articles are hosted by Taylor and Francis Online.
A three-dimensional real-time nonlinear model is presented describing the transient situation of a pressurized water reactor nuclear power plant as dependent on both external control actions or disturbances and the inherent core dynamics. The plant has been assumed to consist of a three-dimensional core (subdivided into coarse-mesh boxes which, in turn, can be combined into superboxes), a natural circulation U-tube steam generator, and the main steam system (with safety, bypass and control valves, and a steam turbine). It can be disturbed from outside by a movement of control rod banks, an injection or dilution of soluble boric acid, and changes in the main coolant and feedwater mass flow, feedwater temperature, and, due to actions on the turbine control or turbine bypass valve, the secondary outlet steam mass flow. Restrictions were imposed by the requirement that the resulting code (named GARLIC) could be also operated either in parallel (i.e., in real time) or even in a predictive mode to the actual reactor process on a process computer (eventually in connection with a color display). These restrictions have been observed by replacing the diffusion term in the neutron kinetics equations by a combination of time-independent spatial coupling coefficients; calculating these coefficients from a comprehensive basic neutronic model; summing up the basic coarse-mesh elements into superboxes by homogenizing the corresponding local values and rebalancing the coupling coefficients over these superboxes; separating the neutron kinetics and thermodynamics and hydrodynamics part of the model, which could be treated in a pseudostationary way, from the nonlinear xenon-iodine dynamic part, then combining these decoupled parts in a recursive way. Taking advantage of the core symmetry properties, one obtains a nonlinear set of algebraic equations with a sparse power state matrix, which allows a further reduction in needed computer capacity when solving the resulting set of equations.