ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
A. Hoeld, O. Lupas
Nuclear Science and Engineering | Volume 85 | Number 4 | December 1983 | Pages 396-417
Technical Paper | doi.org/10.13182/NSE83-A18386
Articles are hosted by Taylor and Francis Online.
A three-dimensional real-time nonlinear model is presented describing the transient situation of a pressurized water reactor nuclear power plant as dependent on both external control actions or disturbances and the inherent core dynamics. The plant has been assumed to consist of a three-dimensional core (subdivided into coarse-mesh boxes which, in turn, can be combined into superboxes), a natural circulation U-tube steam generator, and the main steam system (with safety, bypass and control valves, and a steam turbine). It can be disturbed from outside by a movement of control rod banks, an injection or dilution of soluble boric acid, and changes in the main coolant and feedwater mass flow, feedwater temperature, and, due to actions on the turbine control or turbine bypass valve, the secondary outlet steam mass flow. Restrictions were imposed by the requirement that the resulting code (named GARLIC) could be also operated either in parallel (i.e., in real time) or even in a predictive mode to the actual reactor process on a process computer (eventually in connection with a color display). These restrictions have been observed by replacing the diffusion term in the neutron kinetics equations by a combination of time-independent spatial coupling coefficients; calculating these coefficients from a comprehensive basic neutronic model; summing up the basic coarse-mesh elements into superboxes by homogenizing the corresponding local values and rebalancing the coupling coefficients over these superboxes; separating the neutron kinetics and thermodynamics and hydrodynamics part of the model, which could be treated in a pseudostationary way, from the nonlinear xenon-iodine dynamic part, then combining these decoupled parts in a recursive way. Taking advantage of the core symmetry properties, one obtains a nonlinear set of algebraic equations with a sparse power state matrix, which allows a further reduction in needed computer capacity when solving the resulting set of equations.