ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
R. E. Maerker, M. L. Williams, B. L. Broadhead
Nuclear Science and Engineering | Volume 94 | Number 4 | December 1986 | Pages 291-308
Technical Paper | doi.org/10.13182/NSE86-A18342
Articles are hosted by Taylor and Francis Online.
A technique is described to account for effects of space- and time-dependent core source variations on pressure vessel surveillance dosimetry analysis. The procedure first defines an easily implemented geometry for a single adjoint transport calculation. The results from the adjoint calculation can then be combined with those from a single forward calculation, in conjunction with an adjoint scaling technique, to yield activities and pressure vessel fluxes simultaneously for a wide range of source distributions, dosimeter response functions, and detector locations. This method has been implemented in the LEPRICON code system for vessel fluence determination. An application to an R-θ model of an operating power reactor shows that effects of source perturbations resulting in 20% changes in the core leakage can be predicted within ∼3% at both downcomer and cavity dosimeter locations, for six different dosimeters, by choice of a single suitable adjoint response function.