ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
A new ANSI/ANS standard for liquid metal fire protection published
ANSI/ANS-54.8-2025, Liquid Metal Fire Protection in LMR Plants, received approval from the American National Standards Institute on September 2 and is now available for purchase.
The 2025 edition is a reinvigoration of the withdrawn ANS-54.8-1988 of the same title. The Advanced Reactor Codes and Standards Collaborative (ARCSC) identified the need for a current version of the standard via an industry survey.
Typical liquid metal reactor designs use liquid sodium as the coolant for both the primary and intermediate heat-transport systems. In addition, liquid sodium and NaK (a mixture of sodium and potassium that is liquid at room temperature) are often used in auxiliary heat-removal systems. Since these liquid metals can react readily with oxygen, water, and other compounds, special precautions must be taken in the design, construction, testing, and maintenance of the sodium/NaK systems to ensure that the potential for leakage is very small.
W. L. Whittemore
Nuclear Science and Engineering | Volume 18 | Number 2 | February 1964 | Pages 182-188
Technical Paper | doi.org/10.13182/NSE64-A18317
Articles are hosted by Taylor and Francis Online.
The General Atomic neutron-velocity selector has been used at the electron linear accelerator to study the inelastic scattering by liquid methane and liquid parahydrogen of monoenergetic neutrons with incident energies in the range 0.009 to 0.17 eV. The energy dependence of the total cross sections and the neutron spectra produced by specimens of these materials have also been measured. The inelastic scattering of slow neutrons (< 0.010 eV) at 90° by liquid parahydrogen appears to be smaller than expected on the basis of the measured total cross section and the angular dependence calculated by Sarma. Perhaps this is related to the fact that the total cross section is larger than for freely rotating molecules, indicating the possible existence of some hindrance to molecular motion. The slowing-down power, σnE0/E, a quantitative measure of the neutron-moderating ability, is evaluated from the measured inelastic neutron-scattering data and compared for various neutron energies for the two liquids. A consideration of the various data leads to the conclusion (1) that solid methane is better than liquid parahydrogen for production of very “cold” neutrons (E0 < 0.007 eV), and (2) that parahydrogen is superior to liquid methane for production of cold neutrons with E0 < 0.005 eV.