ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Work advances on X-energy’s TRISO fuel fabrication facility
Small modular reactor developer X-energy, together with its fuel-developing subsidiary TRISO-X, has selected Clark Construction Group to finish the building construction phase of its advanced nuclear fuel fabrication facility, known as TX-1, in Oak Ridge, Tenn. It will be the first of two Oak Ridge facilities built to manufacture the company’s TRISO fuel for use in its Xe-100 SMR. The initial deployment of the Xe-100 will be at Dow Chemical Company’s UCC Seadrift Operations manufacturing site on Texas’s Gulf Coast.
G. Srikantiah
Nuclear Science and Engineering | Volume 24 | Number 2 | February 1966 | Pages 175-183
Technical Paper | doi.org/10.13182/NSE66-A18302
Articles are hosted by Taylor and Francis Online.
Methods of long-term reactivity control for plutonium-fueled D2O-moderated reactors that favor high conversion ratios are considered. One method uses annular gaps around the fuel elements that can be selectively filled with the D2O moderator. Reactivity compensations ranging from 8 to 15% can be achieved with gaps of 6 to 8-cm thickness and a corresponding reduction in conversion ratio of 3 to 5%. In the second method, depleted uranium sleeves that can be removed as required during long-term operation are utilized around fuel elements in annular regions of the reactor. Sleeves of only 0.2-cm thickness, around fuel elements in the central region of the reactor, provide reactivity compensations of up to 10% and actually increase the conversion ratio in the design studied. Average conversion ratios of about 0.90 are obtained in a large D2O-cooled and -moderated reactor using Zircaloy pressure tubes at fuel burnup of 104 MWd/t. The average conversion ratios would increase to about 0.97 if beryllium-based pressure tubes could be developed.