ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Risk-informed, performance-based design in INL’s MARVEL reactor
The American Nuclear Society’s Risk-informed, Performance-based Principles and Policy Committee (RP3C) has held another presentation in its monthly Community of Practice (CoP) series. Former RP3C chair N. Prasad Kadambi opened the meeting with brief introductory remarks about the RP3C and the need for new approaches to nuclear design that go beyond conventional and deterministic methods. He then welcomed this month’s speaker: Doug Gerstner, a nuclear safety engineer at Idaho National Laboratory, who presented “Application of a Qualitative RIPB Approach for the MARVEL Microreactor at INL.”
Watch the full webinar here.
Rashmi C. Desai, Mark Nelkin
Nuclear Science and Engineering | Volume 24 | Number 2 | February 1966 | Pages 142-152
Technical Paper | doi.org/10.13182/NSE66-A18299
Articles are hosted by Taylor and Francis Online.
The time-dependent moments equations derived from the linearized Boltzmann equation are solved for the case of an infinite nonabsorbing medium of hard spheres. The distribution function at zero time is chosen to be Maxwellian at origin and zero elsewhere. The solutions can be applied to neutron diffusion in monatomic hydrogen and to the motion of atoms in a dilute monatomic gas. In the latter case, the solutions give the spatial moments of Van Hove's self-correlation function Gs(,t). Non-Gaussian corrections to Gs(, t) are studied. It is found that these corrections are very sensitive to the type of anisotropy of the scattering kernel. Various approximations (including synthetic kernel) of the exact kernel for a hard sphere gas are considered. The non-Gaussian corrections obtained from approximate kernels are compared with those obtained from the exact kernel. In particular, a recently published kinetic model calculation, using a separable isotropic kernel with l/v scattering cross section, overestimates the non-Gaussian corrections by a factor of almost 4.