ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
J. Schlösser
Nuclear Science and Engineering | Volume 24 | Number 2 | February 1966 | Pages 123-132
Technical Paper | doi.org/10.13182/NSE66-A18297
Articles are hosted by Taylor and Francis Online.
A model of parallel capillaries with different diameters has been developed to explain back-diffusion experiments on four rather different graphites both impregnated and unimpregnated. The transport phenomenon has been taken as an interaction between diffusional and molecular flow on one hand, and viscous and slip flow on the other, to cover the whole range of diameter to mean-free-path ratios possible in graphite. It can be shown that only by assuming at least three bundles of capillaries with different diameters can these experiments be adequately explained. It is further possible to relate the material constants, the viscous flow component B0, and the slip flow component K0 to the pore-size distribution obtained. When we consider the complexity of porous capillaries in graphite, the agreement is found to be good, about 30%.