ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
W. A. Coleman, R. E. Maerker, F. J. Muckenthaler, and P. N. Stevens
Nuclear Science and Engineering | Volume 27 | Number 2 | February 1967 | Pages 411-422
Technical Paper | doi.org/10.13182/NSE67-A18280
Articles are hosted by Taylor and Francis Online.
Extensive Monte Carlo calculations were performed to determine the distribution in energy and angle of neutrons reflected from steel-reinforced concrete for five incident directions and ten incident energy groups extending from 0.5 eV to 200 keV. The reflected distributions were determined in terms of a doubly differential albedo for each of 54 emergent directions for each energy group lying between and including the incident group and the tenth group (0.5 to 1.8 eV). The standard deviation of the doubly differential albedo averaged around ten percent. The angular slowing down density of the incident epicadmium neutrons within the slab was computed at 0.5 eV and was used as the source distribution for a Monte Carlo single-velocity diffusion calculation using 0.025-eV cross sections. From the diffusion calculation, the differential angular albedos of the reflected subcadmium neutrons and the depth distributions of captures occurring at subcadmium energies were obtained. Measurements of the differential angular albedo of emergent subcadmium neutrons due to a measured spectrum of incident monodi-rectional beams of epicadmium neutrons were performed at the ORNL Tower Shielding Facility in an experiment geometrically identical to that previously reported for incident subcadmium beams. Of the 35 common points of calculation and measurement, the two largest discrepancies are 23 and 36%; the remaining 33 comparisons produced a root-mean-square deviation of 4.5%.