ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
E. T. Clarke
Nuclear Science and Engineering | Volume 27 | Number 2 | February 1967 | Pages 394-402
Technical Paper | doi.org/10.13182/NSE67-A18278
Articles are hosted by Taylor and Francis Online.
This paper reviews the status of experimental and theoretical gamma-radiation intensity at or near an air-ground interface. Various measurements of radiation scattered to a detector 3 ft above an air-ground interface containing a point source of 60Co or 137Cs at various distances are compared with Monte Carlo data and moments method calculations for an infinite homogeneous air medium. Other measurements and calculations of skyshine radiation backscattered by the air under similar circumstances are also analyzed. It is shown that the three approaches - experimental, Monte Carlo, and moments method - produce consistent results for 60Co. For an infinite plane source of 137Cs, however, experimental measurements over ice and over concrete indicate about 20% less scattered radiation over concrete than would be received from the same source in an infinite homogeneous air medium.