ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
A. L. Kaplan
Nuclear Science and Engineering | Volume 27 | Number 2 | February 1967 | Pages 388-393
Technical Paper | doi.org/10.13182/NSE67-A18277
Articles are hosted by Taylor and Francis Online.
Attenuation by a floor barrier of fallout gamma radiation scattered into a basement has been studied experimentally with cylindrical steel structures. These structures were 2-ft high, 2-ft in diameter, with a 4-ft-deep basement. Wall thicknesses varied between 5 and 60 psf, with floor thicknesses of 0, 10, 20, and 40 psf. Detectors in the basement were located between 0.25 and 3 ft below ground. Cobalt-60 point sources were used to simulate the fallout field. Basement reduction factors predicted by structure shielding theory were lower than the experimental results by a factor of between 1.5 and 8. This discrepancy was attributed to the theoretical floor-barrier reduction factor. A new theoretical floor-barrier reduction factor, which is a function of both the floor thickness and the solid-angle fraction subtended at the detector by the floor, was constructed within the formalism of the existing structure shielding theory. This new function agreed quite well with both experimental results and Monte Carlo calculations, over the entire range of wall and floor thicknesses used in the experiment.