ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
Donald J. Dudziak
Nuclear Science and Engineering | Volume 27 | Number 2 | February 1967 | Pages 328-337
Technical Paper | doi.org/10.13182/NSE67-A18272
Articles are hosted by Taylor and Francis Online.
Effective two-group gamma-ray spectra have been determined for thermal-neutron capture in sodium, nickel, type-304 stainless steel, and tantalum, as well as for 235 U prompt-fission gamma rays. A seven-group compilation of capture gamma rays was used as the basis for this study. Absorbed dose (uncollided and builtup) in several materials was calculated for varying thicknesses of several intervening shielding materials. The resulting function for each combination was reduced to two exponential functions over a range of 0 up to 560 g/cm2. Effective spectra were determined to be as follows: sodium, 6.09 MeV/capture at 5.5 MeV and 5.74 MeV/capture at 2.0 MeV; nickel, 8.33 MeV/capture at 8.0 MeV and 1.62 MeV/capture at 2.0 MeV; type-304 SS, 5.86 MeV/capture at 8.0 MeV and 1.95 MeV/capture at 2.0 MeV; tantalum, 3.76 MeV/capture at 4.0 MeV and 2.88 MeV/capture at 1.5 MeV; prompt fission, 2.31 MeV/fission at 4.0 MeV and4.92 MeV/fission at 1.25 MeV. These effective spectra reproduce, to within an average absolute deviation of less than 7.4%, the absorbed doses (uncollided and builtup) calculated by the detailed spectra, within the ranges of areal density considered.