ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
V. V. Verbinski, M. S. Bokhari, J. C. Courtney, and G. E. Whitesidestt
Nuclear Science and Engineering | Volume 27 | Number 2 | February 1967 | Pages 283-298
Technical Paper | doi.org/10.13182/NSE67-A18268
Articles are hosted by Taylor and Francis Online.
The spectral intensity of the fast-neutron flux penetrating a water medium was measured for two configurations: a large-source, poor-geometry arrangement; and a small-source, almost-good-geometry configuration., In the large-source experiment, the spectral intensity of the angular flux was obtained at six positions in the water shield of a pool-type reactor and for as many as three angles at each position. In addition to the measurements, the spectral shape and the absolute intensity of angular flux in the shield were calculated. In conjunction with this, the absolute neutron source density was mapped throughout the reactor volume and the distribution along the reactor center line was used as input to two neutron-transport calculations that were carried out for a onedimensional, spherical geometry., In the small-source experiment, a 2-cm-thick lead target irradiated with short bursts of 33-MeV electrons provided a source of photoneutrons with approximately a fission spectrum at a distance of 40 cm from water slabs of various thicknesses. This distance, together with the large separation of slab and detector and a small-aperture collimator, approximated a good-geometry arrangement for measurements of neutrons leaking normally from the slab. Consequently, these leakage spectra were very sensitive to total neutron cross sections and a distinct peak was observed at 5 to 7.5 MeV. This peak was not at first reproduced by transport calculations that used the measured source spectrum as input; however, when the neutron total cross sections of oxygen were updated with relatively recent high-resolution data, the agreement both in spectral shape and in attenuation (the latter determined from sulfur-activation ratios) was noticeably improved.