ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NextGen MURR Working Group established in Missouri
The University of Missouri’s Board of Curators has created the NextGen MURR Working Group to serve as a strategic advisory body for the development of the NextGen MURR (University of Missouri Research Reactor).
D. R. Mathews, K. F. Hansen, and E. A. Mason
Nuclear Science and Engineering | Volume 27 | Number 2 | February 1967 | Pages 263-270
Technical Paper | doi.org/10.13182/NSE67-A18266
Articles are hosted by Taylor and Francis Online.
The method of invariant imbedding has been applied to neutron shielding problems in plane geometry with realistic energy and angle-dependent cross sections. The method seems to offer advantages over competing methods when the shield is heterogeneous and very thick or when the shield is composed of a very large number of different regions. Reflection and transmission equations are derived by the method of invariant imbedding and their numerical solution discussed. A simple exponential approximation is shown to work well for the solution of these equations. Results for several problems including a thick homogenous water shield and a thinner heterogeneous iron/polyethylene/iron shield are compared with results obtained by other methods.