ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
R. R. Coveyou, V. R. Cain, and K. J. Yost
Nuclear Science and Engineering | Volume 27 | Number 2 | February 1967 | Pages 219-234
Technical Paper | doi.org/10.13182/NSE67-A18262
Articles are hosted by Taylor and Francis Online.
The use of the Monte Carlo method for the study of deep penetration of radiation into and through shields entails the use of sophisticated methods of variance reduction to make such calculations economical or even feasible. This paper presents an exposition of the most useful methods of variance reduction. The exposition is unified by consistent exploitation of adjoint formulations to estimate expected values, as in previous work, and further to evaluate the variance of the resulting estimates., The connection between adjoint formulations and the choice of biasing schemes is also investigated. In particular, it is shown that the value function (the solution of the integral equation of the adjoint formulation) is always a good choice for importance function biasing; a sharp upper bound, independent of the particular problem, is found for the resulting variance. Predicted (analytic) and experimental (Monte Carlo) results are also given for a simple one-dimensional problem.