ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
J. Barclay Andrews, II, K. F. Hansen
Nuclear Science and Engineering | Volume 31 | Number 2 | February 1968 | Pages 304-313
Technical Paper | doi.org/10.13182/NSE68-A18242
Articles are hosted by Taylor and Francis Online.
A numerical method for the solution of the time-dependent multigroup diffusion equations is presented. The method has the property that it is numerically unconditionally stable for all changes in reactor properties and all integration time-step sizes. The method assumes that the neutron flux and precursor concentration can be expressed as an exponential function over each time step. As a result of this assumption, and the factoring of the matrix form of the multigroup equations, it is shown that for the case of a constant step change in the properties of the system the asymptotic numerical eigensolution is proportional to the asymptotic eigensolution of the differential equations. An analysis of the truncation error associated with the method is also presented. Finally, a number of numerical experiments are presented which illustrate the accuracy, speed, and general utility of the method.