ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
ANS seeks program evaluators for ABET accreditation
When ABET visits universities for accreditation purposes, it’s crucial that a qualified nuclear expert performs the assessment of that school’s nuclear engineering, radiological engineering, and/or health physics programs. The Accreditation Policies and Procedures Committee (APPC) of the American Nuclear Society works to ensure that a program evaluator (PEV) from the Society leads these ABET assessments.
I. Carlvik
Nuclear Science and Engineering | Volume 31 | Number 2 | February 1968 | Pages 295-303
Technical Paper | doi.org/10.13182/NSE31-295
Articles are hosted by Taylor and Francis Online.
A method has been developed for the solution of the monoenergetic critical problem for a slab or a sphere. The method utilizes an expansion of the flux density in Legendre polynomials of the coordinate. It is equivalent to the usual variational method using powers of the coordinate, but the use of Legendre polynomials makes it possible to calculate most of the elements of the resulting matrix by means of recurrence formulae. A series of calculations has been performed for slabs and spheres with ≤ 5, where is the thickness of the slab or the diameter of the sphere measured in mean-free-paths. The critical problem is equivalent to the problem of determining the decay constant of a subcritical system with an exponentially decaying flux density. In consequence, the calculations also give a series of decay constants for subcritical slabs and spheres. Comparisons with diffusion theory show that large errors can result from uncritical application of diffusion theory to small assemblies. The author would recommend that measurements on small pulsed assemblies be analyzed by means of more accurate methods; for example, the present method extended to multigroup treatment of the energy dependence. The results of the calculations show clearly the interesting fact that the exponentially decaying flux of very small spheres has a minimum at the center.