ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Jeffrey Lewins, Gordon R. Woodcock, Theodore J. Williamson, Albert L. Babb
Nuclear Science and Engineering | Volume 31 | Number 2 | February 1968 | Pages 272-281
Technical Paper | doi.org/10.13182/NSE68-A18239
Articles are hosted by Taylor and Francis Online.
Pontryagin's optimum theory is applied to the problem of determining a flux shutdown program that limits xenon poisoning in a reactor while using the minimum nuclear energy or flux time. The analysis shows several points of difference from the time-optimal problem. Solutions are found for both the unrestricted problem and the problem where the xenon density is restricted within the control period to some maximum acceptable poisoning. The method of solution is new in utilizing a more straightforward optimum theorem and (of necessity) giving the full adjoint solutions. A full solution to the restrained problem shows that a free end-time optimum solution rises at zero flux to the xenon restraint value and follows this value to the target curve, ending the problem. Not only is the energy optimal problem of some practical interest but it makes an excellent illustration of the complications of the continuum solution in optimal control and the very practical need to consider only those solutions satisfying certain state restraints.