ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
J. R. Beyster
Nuclear Science and Engineering | Volume 31 | Number 2 | February 1968 | Pages 254-271
Technical Paper | doi.org/10.13182/NSE68-A18238
Articles are hosted by Taylor and Francis Online.
The single differential cross section for neutron scattering from light water has been measured over the energy range 0.006 to 10 eV. The experimental techniques for making the measurement and correcting the data to obtain an absolute cross section are discussed. It is found that the multiple scattering of neutrons in the sample constitutes a large effect and procedures are utilized and tested for making this correction. The resulting cross sections are compared with predictions of theoretical models describing the molecular motion in water. These models include various versions of the free gas model, the Nelkin model, variations of the Haywood model, the McMurry model, and Radkowski prescription. Completely satisfactory agreement with the available neutron scattering data does not appear possible for any of the above models. The Haywood model seems to provide good agreement, however, for the widest range of data.