ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
James A. Grundl
Nuclear Science and Engineering | Volume 31 | Number 2 | February 1968 | Pages 191-206
Technical Paper | doi.org/10.13182/NSE68-A18231
Articles are hosted by Taylor and Francis Online.
The energy spectra of neutrons from the the thermal-neutron-induced fission of 235U, 233U, and 239Pu have been compared by means of eight activation detectors that cover the energy range 0.8 to 16 MeV. The detectors are exposed to fission neutrons produced at the center of a 10-cm-diam spherical cavity within a heavywater moderator. Comparison of detector responses for the three spectra yield average energy ratios, 235U: 233U: 239Pu = (1): (1.021 ± 0.005): (1.039 ± 0.002). Differences between the normalized spectra are most pronounced at high energies as exemplified by the relative 239Pu: 235U flux ratios 1.17 for 6 < E < 11 MeV and 1.35 for E > 11 MeV. Spectral indexes for the 235U fission spectrum, based on measurements with monoenergetic neutrons, show progressively fewer neutrons above 6 MeV than given by the usual Maxwellian description of the fission spectrum, χ235U(E) = (0.770)E1/2 exp (−0.775E). At lower energies, the observed spectral indexes involving the 235U, Np, and 238U fission detectors are significantly discrepant with those predicted.