ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
James A. Grundl
Nuclear Science and Engineering | Volume 31 | Number 2 | February 1968 | Pages 191-206
Technical Paper | doi.org/10.13182/NSE68-A18231
Articles are hosted by Taylor and Francis Online.
The energy spectra of neutrons from the the thermal-neutron-induced fission of 235U, 233U, and 239Pu have been compared by means of eight activation detectors that cover the energy range 0.8 to 16 MeV. The detectors are exposed to fission neutrons produced at the center of a 10-cm-diam spherical cavity within a heavywater moderator. Comparison of detector responses for the three spectra yield average energy ratios, 235U: 233U: 239Pu = (1): (1.021 ± 0.005): (1.039 ± 0.002). Differences between the normalized spectra are most pronounced at high energies as exemplified by the relative 239Pu: 235U flux ratios 1.17 for 6 < E < 11 MeV and 1.35 for E > 11 MeV. Spectral indexes for the 235U fission spectrum, based on measurements with monoenergetic neutrons, show progressively fewer neutrons above 6 MeV than given by the usual Maxwellian description of the fission spectrum, χ235U(E) = (0.770)E1/2 exp (−0.775E). At lower energies, the observed spectral indexes involving the 235U, Np, and 238U fission detectors are significantly discrepant with those predicted.