ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
G. E. Plummer
Nuclear Science and Engineering | Volume 31 | Number 2 | February 1968 | Pages 183-190
Technical Paper | doi.org/10.13182/NSE68-A18230
Articles are hosted by Taylor and Francis Online.
This experiment was designed to test the barrier and geometry attenuation factors for 60Co gamma rays developed from moments-method calculations by Spencer as given in National Bureau of Standards Monograph 42. A set of vertical, plane steel barriers was employed. Selection of the detector distance from a given barrier and the degree of collimation permitted exposures to be measured as a function of the solid angle subtended by a constant circular area on the barrier. The effective mass thickness of the barriers ranged from 0 to 73 lb/ft2 and the solid angle subtended at the detector varied from 0.2 to 5.5 sr. A uniform plane radiation field was simulated by a traveling 60Co source that was pumped through plastic tubing that covered a 100-ft semicircular area. Extrapolation of the experimental data gave estimates of the exposures to be expected from an infinitely extended field. The final results for a collimated detector, located behind a steel barrier, were normalized to the free-field exposure received by a detector located 3 ft above the extended field. The experimental values were compared to a family of curves based on calculated results. For all cases except those for relatively small solid angles, the agreement was within 20%.