ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
No impact from Savannah River radioactive wasps
The news is abuzz with recent news stories about four radioactive wasp nests found at the Department of Energy’s Savannah River Site in South Carolina. The site has been undergoing cleanup operations since the 1990s related to the production of plutonium and tritium for defense purposes during the Cold War. Cleanup activities are expected to continue into the 2060s.
M. K. Exeter, N. Hay, J. J. Webster, T. A. Dullforce
Nuclear Science and Engineering | Volume 83 | Number 2 | February 1983 | Pages 253-266
Technical Paper | doi.org/10.13182/NSE83-A18218
Articles are hosted by Taylor and Francis Online.
A finite element method of solution for laminar convection flows was used to obtain the flow, temperature, and heat transfer distributions for a heated copper block immersed in a tank of water simulating the debris tray cooling problem that can result after a core meltdown in a liquid-metal-cooled fast breeder reactor. Careful iteration has allowed the solution to be taken up to the onset of turbulence value of Gr · Pr ≃ 5 × 107. Comparison of the numerical solution with experimental results shows very good agreement. Local and average Nusselt numbers for this confined-flow situation are then derived from the solution, and it is shown that the existing correlations for flat plates in an infinite medium can be used to predict to a first approximation the behavior in the more complex geometries simulating the debris tray.