ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
K. Wisshak, F. Käppeler, G. Reffo, F. Fabbri
Nuclear Science and Engineering | Volume 86 | Number 2 | February 1984 | Pages 168-183
Technical Paper | doi.org/10.13182/NSE84-A18199
Articles are hosted by Taylor and Francis Online.
The neutron capture widths of s-wave resonances in 56Fe (27.7 keV), 58Ni (15.4 keV), and 60Ni (12.5 keV) have been determined using a setup completely different from previous experiments. A pulsed 3-MV Van de Graaff accelerator and a kinematically collimated neutron beam, produced via the 7Li(p, n) reaction, were used in the experiments. Capture gamma rays were observed by three Moxon-Rae detectors with graphite, bismuth-graphite, and bismuth converters, respectively. The samples were positioned at a neutron flight path of only 9 cm. Thus, events due to capture of resonance-scattered neutrons in the detectors or in surrounding materials are completely discriminated by their additional time of flight. The high neutron flux at the sample position allowed the use of very thin samples (0.15 to 0.45 mm), avoiding large multiple scattering corrections. The data obtained with the individual detectors were corrected for the efficiency of the respective converter materials. For that purpose, detailed theoretical calculations of the capture gamma-ray spectra of the measured isotopes and of gold, which was used as a standard, were performed. The final results are Γγ(27.7 keV, 56Fe) = 1.06 ± 0.05 eV; Γγ(15.4 keV, 58Ni) = 1.53 ± 0.10 eV; and Γγ(12.5 keV, 60Ni) = 2.92 ± 0.19 eV. The accuracy obtained with the present experimental method represents an improvement by a factor 3 to 6 compared to previous experiments. The investigated s-wave resonances contribute 10 to 40% to the total capture rate of the respective isotopes in a typical fast reactor.