ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
K. Wisshak, F. Käppeler, G. Reffo, F. Fabbri
Nuclear Science and Engineering | Volume 86 | Number 2 | February 1984 | Pages 168-183
Technical Paper | doi.org/10.13182/NSE84-A18199
Articles are hosted by Taylor and Francis Online.
The neutron capture widths of s-wave resonances in 56Fe (27.7 keV), 58Ni (15.4 keV), and 60Ni (12.5 keV) have been determined using a setup completely different from previous experiments. A pulsed 3-MV Van de Graaff accelerator and a kinematically collimated neutron beam, produced via the 7Li(p, n) reaction, were used in the experiments. Capture gamma rays were observed by three Moxon-Rae detectors with graphite, bismuth-graphite, and bismuth converters, respectively. The samples were positioned at a neutron flight path of only 9 cm. Thus, events due to capture of resonance-scattered neutrons in the detectors or in surrounding materials are completely discriminated by their additional time of flight. The high neutron flux at the sample position allowed the use of very thin samples (0.15 to 0.45 mm), avoiding large multiple scattering corrections. The data obtained with the individual detectors were corrected for the efficiency of the respective converter materials. For that purpose, detailed theoretical calculations of the capture gamma-ray spectra of the measured isotopes and of gold, which was used as a standard, were performed. The final results are Γγ(27.7 keV, 56Fe) = 1.06 ± 0.05 eV; Γγ(15.4 keV, 58Ni) = 1.53 ± 0.10 eV; and Γγ(12.5 keV, 60Ni) = 2.92 ± 0.19 eV. The accuracy obtained with the present experimental method represents an improvement by a factor 3 to 6 compared to previous experiments. The investigated s-wave resonances contribute 10 to 40% to the total capture rate of the respective isotopes in a typical fast reactor.