ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Junichi Takagi and Kenkichi Ishigure
Nuclear Science and Engineering | Volume 89 | Number 2 | February 1985 | Pages 177-186
Technical Paper | doi.org/10.13182/NSE85-A18191
Articles are hosted by Taylor and Francis Online.
The thermal decomposition rate of hydrogen peroxide (H2O2) was measured in the aqueous phase at an elevated temperature. It was shown that the reaction follows first-order kinetics, and the rate constant was determined as a function of temperature. The mechanism of the aqueous phase decomposition is discussed, particularly in relation to the activation energy of the reaction. Calculations were carried out for the reactions of O2, H2, and H2O2 in the boiling water reactor sampling line. It was shown that H2O2 disappears, and the back reaction of H2 and O2 to water proceeds in the line. This was interpreted on the basis of the radical mechanism of H2O2 decomposition.