ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Iván Lux and Zoltán Szatmáry
Nuclear Science and Engineering | Volume 89 | Number 2 | February 1985 | Pages 137-149
Technical Paper | doi.org/10.13182/NSE85-A18188
Articles are hosted by Taylor and Francis Online.
Given a number of independent realizations of the k-dimensional random variable x = (x1, x2,…, xk), the components of which may be correlated or independent, each has the same marginal expectation. The question is how the componentwise averages over the realizations are combined to yield an unbiased nearly optimum estimate of the common mean, and how the variance of the mean is to be estimated. An answer is given for the extreme cases of a small number of realizations and of rare events, when the majority of realizations is meaningless and only a small fraction of the samples contributes effectively to the estimate. It is shown how the sample statistics, based on the maximum likelihood estimates, are corrected to yield unbiased estimates. The results can readily be applied in Monte Carlo calculations and in evaluations of experimental data.