ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Iván Lux and Zoltán Szatmáry
Nuclear Science and Engineering | Volume 89 | Number 2 | February 1985 | Pages 137-149
Technical Paper | doi.org/10.13182/NSE85-A18188
Articles are hosted by Taylor and Francis Online.
Given a number of independent realizations of the k-dimensional random variable x = (x1, x2,…, xk), the components of which may be correlated or independent, each has the same marginal expectation. The question is how the componentwise averages over the realizations are combined to yield an unbiased nearly optimum estimate of the common mean, and how the variance of the mean is to be estimated. An answer is given for the extreme cases of a small number of realizations and of rare events, when the majority of realizations is meaningless and only a small fraction of the samples contributes effectively to the estimate. It is shown how the sample statistics, based on the maximum likelihood estimates, are corrected to yield unbiased estimates. The results can readily be applied in Monte Carlo calculations and in evaluations of experimental data.