ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
P. Reuss
Nuclear Science and Engineering | Volume 92 | Number 2 | February 1986 | Pages 261-266
Technical Paper | doi.org/10.13182/NSE86-A18174
Articles are hosted by Taylor and Francis Online.
Because of the large number of heavy nuclide resonances, a detailed neutron flux calculation in the epithermal range cannot be made by standard nuclear reactor codes: It would need several tens of thousands of energy points. However, by using precalculated effective reaction rates, only a few tens of groups are sufficient for accurate spectrum and reaction rate calculations, if a consistent formalism is used. Such a formalism was elaborated in the 1970s by M. Livolant, F. Jeanpierre for the “one resonant nuclide-one resonant zone” problem, and was implemented in the APOLLO code. In practical cases there are several resonant nuclides and often resonant zones of different characteristics, e.g., a lattice constituted with different kinds of pins, a lattice with irregular “water holes,” a fuel element with temperature (therefore Doppler effect) gradients, and so on. Since these problems cannot be correctly treated by APOLLO, a generalization of the formalism was derived. The basic principles were retained, and an algorithm was constructed that would not require too expensive calculations. The Livolant-Jeanpierre theory is briefly summarized, equations for the most general case are presented, some approximations for practical calculations are proposed, and numerical tests on significant examples are discussed.