ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
Žarko Stankovski
Nuclear Science and Engineering | Volume 92 | Number 2 | February 1986 | Pages 255-260
Technical Paper | doi.org/10.13182/NSE86-A18173
Articles are hosted by Taylor and Francis Online.
A new generalization of the interface-current method for coupling two-dimensional heterogeneous assemblies, called substructures, has been developed. The method has been designed for fine-structure burnup calculations in large, very heterogeneous media. For the calculations, the medium is divided into rectangular substructures, which can have internal symmetries, containing rectangular and/or cylindrical structure elements, divided into homogeneous zones. A zonewise flat or linear expansion is used to formulate a direct collision-probability problem within each substructure. The substructures are coupled by making a piecewise uniform or linear expansion for the partial currents entering and leaving the substructures. The method has also been used to implement an approximate piecewise isotropic reflection for two-dimensional x-y collision probabilities calculations. The accuracies and computing times achieved are illustrated by one-group fixed-source numerical calculations for a typical 7 × 7 pin pressurized water reactor assembly as well as for a set of fuel slabs imbedded in a water moderator.