ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
James Y. N. Wang
Nuclear Science and Engineering | Volume 18 | Number 1 | January 1964 | Pages 18-30
Technical Paper | doi.org/10.13182/NSE64-A18138
Articles are hosted by Taylor and Francis Online.
Titanium and titanium alloys are not generally resistant to mercury in the temperature range between 371 to 538 C. The extent of corrosion is dependent upon alloy composition and heat treatment. Nitrided surfaces of titanium and its alloys exhibit high resistance to mercury at 538 C for periods up to 14 days. At this temperature, mercury vapor attacks certain nitrided alloys while others are immune. For instance, the corrosion of a nitrided Ti/8wt% alloy was found to be insignificant; however, severe corrosion occurs at the nitrided layer of Ti/7wt% Al/12wt% Zr.a A study of the effect of metallic additives to mercury on the corrosion resistance of titanium at 538 C has also been made. It has been shown that a saturated mercury solution of zirconium or nickel exerts a strong influence in reducing corrosion. The films formed may act as a diffusion barrier between solid and liquid.