ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Work advances on X-energy’s TRISO fuel fabrication facility
Small modular reactor developer X-energy, together with its fuel-developing subsidiary TRISO-X, has selected Clark Construction Group to finish the building construction phase of its advanced nuclear fuel fabrication facility, known as TX-1, in Oak Ridge, Tenn. It will be the first of two Oak Ridge facilities built to manufacture the company’s TRISO fuel for use in its Xe-100 SMR. The initial deployment of the Xe-100 will be at Dow Chemical Company’s UCC Seadrift Operations manufacturing site on Texas’s Gulf Coast.
H. L. Brown, Jr., T. J. Connolly
Nuclear Science and Engineering | Volume 24 | Number 1 | January 1966 | Pages 6-17
Technical Paper | doi.org/10.13182/NSE66-A18119
Articles are hosted by Taylor and Francis Online.
A method for calculating effective cadmium cutoff energies to be applied to measured resonance integrals of Doppler-broadened-resonance absorbers, as well as l/υ absorbers, is described. The method is applied to infinite slab, infinite cylinder, and sphere configurations in which the absorber, at some uniform concentration, occupies all the space within the cadmium cover. It is pointed out that the effective cutoff value applying to an activation measurement of a resonance integral differs from that applying to a reactivity measurement under otherwise identical conditions. The development of calculations for both cases is presented. Some results are given for gold, indium-115, plutonium-240, and the l/υ absorbers, boron and vanadium, as a function of sample configuration, cadmium thickness, absorber density, temperature, and neutron spectrum. Many of these values differ significantly from the nominal 0.5 eV.