ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Work advances on X-energy’s TRISO fuel fabrication facility
Small modular reactor developer X-energy, together with its fuel-developing subsidiary TRISO-X, has selected Clark Construction Group to finish the building construction phase of its advanced nuclear fuel fabrication facility, known as TX-1, in Oak Ridge, Tenn. It will be the first of two Oak Ridge facilities built to manufacture the company’s TRISO fuel for use in its Xe-100 SMR. The initial deployment of the Xe-100 will be at Dow Chemical Company’s UCC Seadrift Operations manufacturing site on Texas’s Gulf Coast.
W. C. Yee, W. Davis, Jr.
Nuclear Science and Engineering | Volume 24 | Number 1 | January 1966 | Pages 1-5
Technical Paper | doi.org/10.13182/NSE66-A18118
Articles are hosted by Taylor and Francis Online.
Prolonged exposure of the hydrogen form of a cation-exchange resin—a sulfonated copolymer of polystyrene crosslinked with divinylbenzene—to gamma radiation and flowing water caused more drastic changes in the chemical and physical properties of the material than has been reported by other investigators for resin exposed to like dosage in a static system. After a dose of 0.75 × 109 rads in a dynamic system, the rate of loss of strong-acid capacity was 20 to 25%/(W-h g) of dry resin, compared with the 4% and the 10 to 20% found by others for the static system. Also, de-crosslinking of more than 4% of the resin matrix accompanied this loss of capacity, compared with the more moderate de-crosslinking or even additional crosslinking reported for the static system. Gamma radiation also caused gas evolution, bead swelling, and produced a weak-acid capacity in the resin equivalent to 3 to 5% of the original strong-acid capacity. Decomposition products included soluble sulfuric, sulfonic, and oxalic acids and insoluble bits of resin. The average rate of loss of sulfur during exposure was estimated to represent 1.0 to 1.2 atoms lost per 100 eV of energy absorbed.