ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
T. W. Kerlin
Nuclear Science and Engineering | Volume 27 | Number 1 | January 1967 | Pages 120-130
Technical Paper | doi.org/10.13182/NSE67-A18048
Articles are hosted by Taylor and Francis Online.
A systematic procedure is presented for calculating the least stable condition in a reactor system that can occur within the uncertainty range on system parameters. This uncertainty range is due to the impossibility of perfectly predicting design parameters and the effect of aging of the system on these parameters. The method uses the linear approximation to the system dynamics equations and a steepest ascent extremum-seeking procedure. The procedure can also be reversed to determine design changes needed to give greater system stability. The applicability of the method for solving practical reactor problems has been demonstrated in an analysis of the Molten Salt Reactor Experiment using a computer program developed to implement the method. In this paper, the method is illustrated with a small sample problem.