ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
L. E. Beghain, F. Hofmann, S. Wilensky
Nuclear Science and Engineering | Volume 27 | Number 1 | January 1967 | Pages 80-84
Technical Paper | doi.org/10.13182/NSE67-A18044
Articles are hosted by Taylor and Francis Online.
A pulse of monoenergetic fast neutrons of several nanoseconds duration is used to excite a lead assembly. The neutron decay is measured as a function of assembly size with conventional nanosecond time-of-flight equipment. The neutron detector is biased to eliminate all nonelasticly scattered neutrons. A theoretical relationship has been developed by Paik which relates the assembly size to the measured decay constant. The nonelastic cross section appears as a parameter in Paik's theory and can be chosen to give the best fit to the experimental data. Decay constants were measured at 2.1 and 1.7 MeV for lead assemblies 20-in. wide x 20-in. high and thicknesses from 1 to 8 in. Paik's theory assumes the establishment of an asymptotic spacial decay mode. This assumption was verified by measuring the neutron decay at various positions of the assembly. The results show that it takes the order of 10 to 15 nsec to establish a spacial mode. This method has been used to measure the total nonelastic cross section for lead at 2.1 and 1.7 MeV.