ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
V. V. Verbinski
Nuclear Science and Engineering | Volume 27 | Number 1 | January 1967 | Pages 67-79
Technical Paper | doi.org/10.13182/NSE67-A18043
Articles are hosted by Taylor and Francis Online.
Experiments in which a wide range of scattering materials in the form of slabs were bombarded by reactor neutrons showed that the angular distribution of low-energy (<5-eV) neutrons leaking from the opposite side of a slab is independent of the source term and of the slab thickness for thicknesses greater than some minimum thickness zmin. In the case of pure lead, pure water, and mildly poisoned water, the resulting distributions are in agreement with the Fermi expression Φ(µ) = 1 + √3 µ. The results for pure lead are also in excellent agreement with one-velocity calculations. An imperfect experiment with poisoned lead is in qualitative agreement with one-velocity calculations. The angular distribution for LiH is described by Φ(µ) = 1 + Aµ where A is less than √3 for subcadmium neutrons and greater than √3 at 1.5 and 5 eV. For energies above 5 eV, a Monte Carlo calculation on LiH showed that A continues to rise to a peak value of about 2.5 at 30 eV, after which it decreases to a value of √3 above 103 eV, where the absorption cross section of lithium becomes negligible. The applicability of two neutron transport codes that numerically integrate the Boltzmann transport equation was tested in additional calculations for LiH and water. Although the two codes have been used successfully in other types of shielding calculations, they yielded angular distributions for the same material that disagreed with each other, as well as with some experimental data. This suggests that the development of neutron transport codes should include angular distribution tests.