ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
V. V. Verbinski
Nuclear Science and Engineering | Volume 27 | Number 1 | January 1967 | Pages 51-66
Technical Paper | doi.org/10.13182/NSE67-A18042
Articles are hosted by Taylor and Francis Online.
Measurements of the spectra of neutrons moderated in LiH were made in the energy range of about 0.01 to 600 eV, and the results were compared with calculated spectra obtained from a Monte Carlo calculation, a direct numerical integration of the Boltzmann equation (NIOBE code), a moments numerical calculation, and three infinite-medium thermalization calculations, each utilizing a different scattering kernel. The measurements were carried out by irradiating slabs of LiH with neutrons having a near-fission spectrum. The spectra of the leakage flux, of the forward-directed flux, and of the scalar flux within the slab were obtained at neutron penetrations of 2.5 to 10 cm. Below 30 eV, the leakage flux and scalar flux attained an asymptotic spectral shape at a penetration of 2.5 cm, and the forward-directed flux at about 5 cm. The shapes of the calculated spectra agree with the shapes of the measured spectra for all energy regions in which each calculation is valid. A large discrepancy between the NIOBE code predictions and the measurements below 0.08 eV is caused by upscattering and molecular binding effects, which are neglected by NIOBE. These effects were included in a neutron thermalization calculation for an infinite medium with a constant source density; however, good agreement with measurement was obtained only for the case in which the measurement had been made in a nearly gradient-free region. In a region of strong flux gradients, the spectrum of the forward-directed flux is shown to be related to that of the scalar flux with good accuracy by the Purohit expression, according to a NIOBE code calculation which yielded both spectra.