ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
George Patrick Lasche
Nuclear Science and Engineering | Volume 83 | Number 1 | January 1983 | Pages 162-173
Technical Paper | doi.org/10.13182/NSE83-A17997
Articles are hosted by Taylor and Francis Online.
A “back-of-the-envelope” method is presented for estimating neutron-induced radionuclide populations. The method uses energy-averaged neutron-reaction cross sections as base data and accounts for nonequilibrium nuclide formation by any sequence of transmutations; it provides for cases in which nuclides in transmutation sequences may be produced in more than one way or may decay or react to produce more than one product nuclide, and it accounts for both constant physical removal from circulating fluids and the severe depletion of parent nuclei. Evaluation in a series of time steps is not required; the calculation is done only for the time of interest. Estimates of neutron-induced radionuclide populations are made from the sum of population contributions corresponding to the most significant transmutation sequences by which the radionuclide is formed. Transmutation sequences are defined in such a way that population contributions corresponding to them can be evaluated from either exact analytic solutions or from a simple approximate procedure that always yields an upper bound to population contribution.