ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Toshio Wakabayashi, Isao Minatsuki
Nuclear Science and Engineering | Volume 83 | Number 1 | January 1983 | Pages 50-62
Technical Paper | doi.org/10.13182/NSE83-A17988
Articles are hosted by Taylor and Francis Online.
The physical behavior of burnable poison fuel pins, containing 0.1, 0.5, and 1.0 wt% Gd2O3 in 1.5 wt% UO2 pellets, has been studied through the measurements of reactivity change, coolant void reactivity, local power distribution, and thermal neutron flux distribution including fine structure, using a heavy-water-moderated, cluster-type fuel lattice. A new technique for utilizing a burnable poison has been developed using a gadolinium absorber rod inserted into the center of the cluster-type fuel assembly. Its physical behavior has been studied through the measurements of accompanying reactivity change, coolant void reactivity, local power distribution, and thermal neutron flux distribution. When the Gd2O3 content of the fuel pellets is more than 0.5 wt%, the reactivity effect is reduced largely due to the saturation of the thermal neutron self-shielding effect in the poisoned fuel pin. A gadolinium absorber rod inserted in the center of the fuel assembly, although it causes a small increase in local power peaking, is effective in the control of the initial excess reactivity and favorably affects the coolant void reactivity. An accurate calculation by the WIMS-D code requires division of the fuel pellet region into more than five mesh intervals owing to the enhancement of the thermal neutron self-shielding effect due to absorption by the gadolinium in the poisoned fuel pins.