ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
Alex Galperin
Nuclear Science and Engineering | Volume 86 | Number 1 | January 1984 | Pages 112-115
Technical Note | doi.org/10.13182/NSE84-A17976
Articles are hosted by Taylor and Francis Online.
An alternative method of thorium utilization in light water reactors (LWRs) is proposed. The main idea of the proposed concept is to apply a different fuel management scheme for the neutron-producing part of the core, the uranium seed, and for the neutron-absorbing part of the core, the thorium blanket. An example of the specific design based on this concept was analyzed, and preliminary evaluation indicated the potential of significant savings in uranium consumption. The fuel cycle of the proposed concept includes reprocessing and re-fabrication of uranium fuel only, without separation of plutonium and 233U isotopes. Such a fuel cycle offers higher proliferation resistance compared with the LWR recycle mode of operation or the light water breeder reactor fuel cycle. Finally, the feasibility of the reactor design based on the proposed concept may be established after detailed thermal-hydraulic analysis and study of the irradiation behavior of the thorium-based fuel.