ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Chuande Yang, Pierre Benoist
Nuclear Science and Engineering | Volume 86 | Number 1 | January 1984 | Pages 47-62
Technical Paper | doi.org/10.13182/NSE84-A17969
Articles are hosted by Taylor and Francis Online.
Scattering anisotropy is often taken into account, in an isotropic formalism, by a transport correction. This correction, which, even in a homogeneous medium, is known to be false in a multigroup theory, is always incorrect for the calculation of neutron leakages in a lattice. The method presented here allows calculation of the buckling-independent diffusion coefficients in a Wigner-Seitz cell, for a linearly anisotropic scattering law. It allows testing of the degree of approximation of the transport correction in various types of lattices, and shows that the axial coefficient may be strongly underestimated in certain cases. This method also allows testing of the simple formulas presented in the past for diffusion coefficients, which lead to good results. The problem of the coupling between energy groups, which appears in the calculation of diffusion coefficients, is also analyzed by the present method; it usually appears to be weak.