ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
G. C. Pomraning
Nuclear Science and Engineering | Volume 124 | Number 3 | November 1996 | Pages 390-397
Technical Paper | doi.org/10.13182/NSE96-A17918
Articles are hosted by Taylor and Francis Online.
If the scattering interaction in linear particle transport problems is highly peaked about zero momentum transfer, a common and often useful approximation is the replacement of the integral scattering operator with the differential Fokker-Planck operator. This operator involves a first derivative in energy and second derivatives in angle. In this paper, higher order Fokker-Planck scattering operators are derived, involving higher derivatives in both energy and angle. The applicability of these higher order differential operators to representative scattering kernels is discussed. It is shown that, depending upon the details of the scattering kernel in the integral operator, higher order Fokker-Planck approximations may or may not be valid. Even the classic low-order Fokker-Planck operator fails as an approximation for certain highly peaked scattering kernels. In particular, no Fokker-Planck operator is a valid approximation for scattering involving the widely used Henyey-Greenstein scattering kernel.