ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Kojiro Nishina and Yoshihiro Yamane
Nuclear Science and Engineering | Volume 89 | Number 1 | January 1985 | Pages 102-108
Technical Note | doi.org/10.13182/NSE85-A17888
Articles are hosted by Taylor and Francis Online.
A two-group, one-dimensional formulation of a coupled-core system is proposed as a revision of the one-group response function method by Shinkawa et al. The coupling coefficient of the Kyoto University Critical Assembly symmetric coupled-core loading is revised. In such a light-water-coupled system, the fast-to-fast coupling, Δ11 proves the greatest, the fast-to-thermal, Δ12, the second, and the thermal-to-thermal, Δ22, the smallest component within the quantity; at the core distance of 10 cm, Δ12 = 0.68Δ11 and Δ22 = 0.028Δ11. Beyond 20 cm, both Δ11 and Δ12 decrease approximately by the fast-neutron relaxation length of water. The effectiveness of the incoming neutrons is considerably dependent on the thickness of the core that receives them.