ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Kojiro Nishina and Yoshihiro Yamane
Nuclear Science and Engineering | Volume 89 | Number 1 | January 1985 | Pages 102-108
Technical Note | doi.org/10.13182/NSE85-A17888
Articles are hosted by Taylor and Francis Online.
A two-group, one-dimensional formulation of a coupled-core system is proposed as a revision of the one-group response function method by Shinkawa et al. The coupling coefficient of the Kyoto University Critical Assembly symmetric coupled-core loading is revised. In such a light-water-coupled system, the fast-to-fast coupling, Δ11 proves the greatest, the fast-to-thermal, Δ12, the second, and the thermal-to-thermal, Δ22, the smallest component within the quantity; at the core distance of 10 cm, Δ12 = 0.68Δ11 and Δ22 = 0.028Δ11. Beyond 20 cm, both Δ11 and Δ12 decrease approximately by the fast-neutron relaxation length of water. The effectiveness of the incoming neutrons is considerably dependent on the thickness of the core that receives them.