ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Kojiro Nishina and Yoshihiro Yamane
Nuclear Science and Engineering | Volume 89 | Number 1 | January 1985 | Pages 102-108
Technical Note | doi.org/10.13182/NSE85-A17888
Articles are hosted by Taylor and Francis Online.
A two-group, one-dimensional formulation of a coupled-core system is proposed as a revision of the one-group response function method by Shinkawa et al. The coupling coefficient of the Kyoto University Critical Assembly symmetric coupled-core loading is revised. In such a light-water-coupled system, the fast-to-fast coupling, Δ11 proves the greatest, the fast-to-thermal, Δ12, the second, and the thermal-to-thermal, Δ22, the smallest component within the quantity; at the core distance of 10 cm, Δ12 = 0.68Δ11 and Δ22 = 0.028Δ11. Beyond 20 cm, both Δ11 and Δ12 decrease approximately by the fast-neutron relaxation length of water. The effectiveness of the incoming neutrons is considerably dependent on the thickness of the core that receives them.