ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
Masao Kitamura, Eishi Ibe, Shunsuke Uchida, Takashi Honda, Glauco Romeo, Robert L. Cowan
Nuclear Science and Engineering | Volume 89 | Number 1 | January 1985 | Pages 61-69
Technical Paper | doi.org/10.13182/NSE85-A17883
Articles are hosted by Taylor and Francis Online.
60Co accumulation on boiling water reactor (BWR) primary cooling pipings. To demonstrate the treatment effect, test specimens, which had been exposed to simulated BWR water in an autoclave (temperature, 286 °C; pH, 7; oxygen concentration, 200 ppb) for up to 200 h, were installed in the Hatch-2 inplant loop and their 60Co deposition amounts were compared with those of as-received specimens. Preoxidation treatment for 200 h resulted in deposits of about one-fourth those of as-received specimens. It was estimated that the maximum amount of 60Co deposited on primary piping during the entire plant operation life (30 yr) would be reduced to about one-half of that without preoxidation treatment if the 60Co concentration in the reactor water was constant.