ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Frederick R. Best, David Wayne, Carl Erdman
Nuclear Science and Engineering | Volume 89 | Number 1 | January 1985 | Pages 49-60
Technical Paper | doi.org/10.13182/NSE85-A17882
Articles are hosted by Taylor and Francis Online.
A proposed fuel freezing mechanism for molten UO2 fuel penetrating a steel channel was investigated in the course of liquid-metal-cooled fast breeder reactor hypothetical core disruptive accident safety studies. The fuel crust deposited on an underlying melting steel wall was analyzed as being subjected to two stresses, one due to the pressure difference between the flowing fuel and the stagnant molten steel layer, and the other resulting from the temperature variation through the crust thickness. Analyses based on the proposed freezing mechanism and comparisons with fuel freezing experiments confirmed that fuel freezing occurs in three modes. For initially low steel wall temperatures, the fuel crust was stable and grew to occlude the channel. At high steel wall temperatures (above 1070 K), instantaneous wall melting leading to steel entrainment was calculated to occur with final penetration depending on the refreezing of the entrained steel. Between these two extremes, the stress developed within the crust at the steel melting front exceeds the critical buckling value, the crust ruptures, and steel is injected into the fuel flow. Freezing is dominated by the fuel/steel mixture. The theoretical penetration distances and freezing times were in good agreement with the experimental results with no more than 20% error involved.