ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
E. Wacholder, S. Kaizerman, N. Tomerian, D. G. Cacuci
Nuclear Science and Engineering | Volume 89 | Number 1 | January 1985 | Pages 1-35
Technical Paper | doi.org/10.13182/NSE85-A17880
Articles are hosted by Taylor and Francis Online.
Two methods of sensitivity theory, i.e., the Direct Sensitivity Approach and the Adjoint Sensitivity Method, have been successfully applied to a simplified problem of transient, one-dimensional, composite region of single-phase and homogeneous equilibrium two-phase flow within a uniformly heated channel subjected to an exponential inlet flow decay. In both methods, exact analytical solutions for all elementary sensitivity coefficients at each point in space and time are obtained. A general procedure for the construction of the sensitivity equations' boundary conditions at the moving boundary between the two phases has been developed and applied. Discontinuities in the velocity and quality sensitivity coefficients across the moving boundary have been obtained. The enthalpy sensitivity coefficients are found to be continuous. The behavior of the sensitivity coefficients has been investigated. This investigation provides insights into the relative importance of the input parameters and the nature of the propagation of uncertainties in space and time in two-phase flow systems.