ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Misako Ishiguro and Hiroo Harada, Naohisa Shinozawa and Ken-itsu Naraoka
Nuclear Science and Engineering | Volume 92 | Number 1 | January 1986 | Pages 126-135
Technical Paper | doi.org/10.13182/NSE86-A17873
Articles are hosted by Taylor and Francis Online.
An experience with the vectorization of the light water reactor transient analysis code RELAP5/MODI on a vector supercomputer FACOM VP-100 (peak speed 250 million floating point operations/s, clock period 7.5 ns) is described. The approach to the vectorization is based on the junction and volume level parallelisms for the hydrodynamic model, and the heat structure and heat mesh levels for the heat transfer model. The VP-100 vectorized code version yields a 2.4 to 2.8 factor speed increase over the FACOM M-380 computer, depending on the number of spatial cells being used. The M-380 is an IBM-type computer with the same speed as the VP-100 in scalar mode.