ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Misako Ishiguro and Hiroo Harada, Naohisa Shinozawa and Ken-itsu Naraoka
Nuclear Science and Engineering | Volume 92 | Number 1 | January 1986 | Pages 126-135
Technical Paper | doi.org/10.13182/NSE86-A17873
Articles are hosted by Taylor and Francis Online.
An experience with the vectorization of the light water reactor transient analysis code RELAP5/MODI on a vector supercomputer FACOM VP-100 (peak speed 250 million floating point operations/s, clock period 7.5 ns) is described. The approach to the vectorization is based on the junction and volume level parallelisms for the hydrodynamic model, and the heat structure and heat mesh levels for the heat transfer model. The VP-100 vectorized code version yields a 2.4 to 2.8 factor speed increase over the FACOM M-380 computer, depending on the number of spatial cells being used. The M-380 is an IBM-type computer with the same speed as the VP-100 in scalar mode.