ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
R. A. Stark, G. H. Miley
Nuclear Science and Engineering | Volume 92 | Number 1 | January 1986 | Pages 92-97
Technical Paper | doi.org/10.13182/NSE86-A17869
Articles are hosted by Taylor and Francis Online.
A one-dimensional radial hybrid code was written to study the start-up of the field-reversed mirror via neutral beam injection. This code, named FROST (Field-Reversed One-dimensional STart- up), models the plasma as azimuthally symmetric with no axial dependence. A multigroup method in energy and canonical angular momentum describes the large orbit ions from the beam. This method is designed to be more efficient than those employing particle tracking, since the characteristic time scale of the simulation is the ion slowing down time, rather than the much shorter cyclotron period. A time-differentiated Grad-Shafranov equation couples the ion current to massless fluid equations describing electrons and low-energy ions. Flux coordinates are used in this fluid model, in preference to a Eulerian framework, so that coupling of plasma at the two different radii of a closed flux surface can be treated with ease. Since a fluid treatment for electrons is invalid near afield null, a separate model for the electron current was included for this region, which is a unique feature. Results of simulation of injection into a 2XIIB-like plasma are discussed. Electron currents are found to retard, but not prevent, reversal of the magnetic field at the plasma center.