ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
R. A. Stark, G. H. Miley
Nuclear Science and Engineering | Volume 92 | Number 1 | January 1986 | Pages 92-97
Technical Paper | doi.org/10.13182/NSE86-A17869
Articles are hosted by Taylor and Francis Online.
A one-dimensional radial hybrid code was written to study the start-up of the field-reversed mirror via neutral beam injection. This code, named FROST (Field-Reversed One-dimensional STart- up), models the plasma as azimuthally symmetric with no axial dependence. A multigroup method in energy and canonical angular momentum describes the large orbit ions from the beam. This method is designed to be more efficient than those employing particle tracking, since the characteristic time scale of the simulation is the ion slowing down time, rather than the much shorter cyclotron period. A time-differentiated Grad-Shafranov equation couples the ion current to massless fluid equations describing electrons and low-energy ions. Flux coordinates are used in this fluid model, in preference to a Eulerian framework, so that coupling of plasma at the two different radii of a closed flux surface can be treated with ease. Since a fluid treatment for electrons is invalid near afield null, a separate model for the electron current was included for this region, which is a unique feature. Results of simulation of injection into a 2XIIB-like plasma are discussed. Electron currents are found to retard, but not prevent, reversal of the magnetic field at the plasma center.