ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Taha H. Zerguini
Nuclear Science and Engineering | Volume 92 | Number 1 | January 1986 | Pages 84-91
Technical Paper | doi.org/10.13182/NSE86-A17868
Articles are hosted by Taylor and Francis Online.
A perturbation method is developed to find solutions of sloshing ion distributions. This method uses an expansion in the ratio of electrostatic potential to average ion energy to simplify the bounce-averaged Fokker-Planck equation. Finite element techniques, which provide rapid numerical solutions for parametric studies of sloshing ions, are used to derive the zeroth-order angular and velocity equations. The first-order two-dimensional equation was also expanded into finite element “hat functions.” Application of Galerkin's method gives a linear system of equations where all matrix and source elements are calculated analytically. The density ratio and the potential profiles as functions of axial distance are computed. There is excellent agreement with results from the Lawrence Liver-more National Laboratory bounce-averaged Fokker-Planck code with as much as 500 times and 50 times less Cray-1 computer time for the zeroth- and the first-order solutions, respectively.