ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
K. Koebke, H. Haase, L. Hetzelt, H.-J. Winter
Nuclear Science and Engineering | Volume 92 | Number 1 | January 1986 | Pages 56-65
Technical Paper | doi.org/10.13182/NSE86-A17865
Articles are hosted by Taylor and Francis Online.
The efficient use of nodal methods for three-dimensional two-group reactor calculations requires homogenization over large volumes or nodes. This homogenization removes the internal structure of the nodes. On the other hand, accurate pinwise power distributions are indispensable for light water reactor design. A homogenization and dehomogenization procedure called the simplified equivalence theory (SET) has been proposed, which allows the accurate and inexpensive determination of pinwise power distributions of fresh reactor cores. The SET procedure is extended to burnup and parameter dependencies. For the case of fuel assembly homogenization and dehomogenization, this extension is validated by a procedure that allows assessment of the accuracy of the method, referring exclusively to the spectral geometry of the assembly. For the validation of the equivalent reflector model, a nodal reactor test problem is set up which shows that this model is adequate to describe core/reflector interactions under burnup conditions.