ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Temitope A. Taiwo, A. F. Henry
Nuclear Science and Engineering | Volume 92 | Number 1 | January 1986 | Pages 34-41
Technical Paper | doi.org/10.13182/NSE86-A17862
Articles are hosted by Taylor and Francis Online.
The standard point kinetics equations and formally exact expressions for reactivity, prompt neutron lifetime, and effective delayed neutron fractions are derived from the matrix form of the nodal code QUANDRY. Perturbation theory expressions for reactivity based both on the standard quadratic-transverse-leakage form of QUANDRY and on the coarse-mesh finite difference (CMFD) form, made accurate by the use of discontinuity factors, are derived. With three-dimensional CMFD QUANDRY transient calculations taken as numerical standards, the accuracy of several standard point kinetics methods as well as the improved quasi-static method is tested. Results suggest that point kinetics methods are poor for rod ejection calculations, even if a precalculated table of rod worth versus position is used to infer the reactivity contribution of the moving rods. For transients not involving rod motion, the point kinetics equations are more accurate. Use of core-averaged (rather than node-dependent) temperature coefficients, however, can produce significant errors. The quasistatic scheme appears to yield acceptably accurate results but, for the tests run, consistently required more computing time than needed for the full three-dimensional solutions.