ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
W. J. Walsh and George Burnet
Nuclear Science and Engineering | Volume 25 | Number 3 | July 1966 | Pages 227-235
Technical Paper | doi.org/10.13182/NSE66-A17829
Articles are hosted by Taylor and Francis Online.
To learn more about liquid metal distillation as it might be applied to nuclear fuel recovery and reprocessing, liquid metal distillations involving the tin-zinc, cadmium-bismuth, and indium-zinc binary systems were conducted in an evacuated chamber. An x-ray fluorescence spectrometer provided a continuous chemical analysis of the distilling surface during each run. This information was used to evaluate the validity of various theories and assumptions concerning surface depletion, oxide contamination, and turbulence effects. The existence of a large surface depletion effect in nonturbulent metal distillations was proven. However, the level of turbulence necessary to eliminate concentration gradients was found to be much lower than that assumed by some designers of commercial equipment. The presence of surface oxides was often an important factor in determining the enrichment and rate of distillation. The Langmuir-Knudsen theory was shown to be unreliable when liquid diffusion or surface oxide resistances were significant. A more complete approach involving the principles of transport phenomena was developed. An analytical solution was derived for the nonturbulent case and was tested using the spectrometer data.