ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
Gary J. Dau and Monte V. Davis
Nuclear Science and Engineering | Volume 25 | Number 3 | July 1966 | Pages 223-226
Technical Paper | doi.org/10.13182/NSE66-A17828
Articles are hosted by Taylor and Francis Online.
Theoretical development for the gamma-induced production of conduction band electrons in alumina is presented. Consideration of charge carrier mobility limited investigations to crystals having ionic bonding. Because of the difficulty in evaluating theoretical constants, all were combined and considered to be independent of temperature and radiation. This constant was evaluated experimentally. A model with a single trap depth was developed for predicting conductivity of ionic insulators as a function of temperature and radiation dose rate. The model is , where the first term on the right represents ionic conductivity of material external to a radiation field and the second term describes radiation-induced conductivity. Term P represents gamma dose rate in roentgen per hour, G is an experimentally determined constant, and W represents the energy necessary to raise trapped electrons into the conduction band. The temperature dependence of the mobility is represented by (T)3/2. Evaluation of experimental data for alumina gave W = 0.086 ± 0.014 eV and G = 7.4 × lO−21 (Ω−1cm−1K3/2R−1h).